# Preconditions for Improved Energy Efficiency and Increased Use of Renewable Energy in the Russian Barents Region

### **RESULTS OF A STUDY COMPLETED IN 2010**

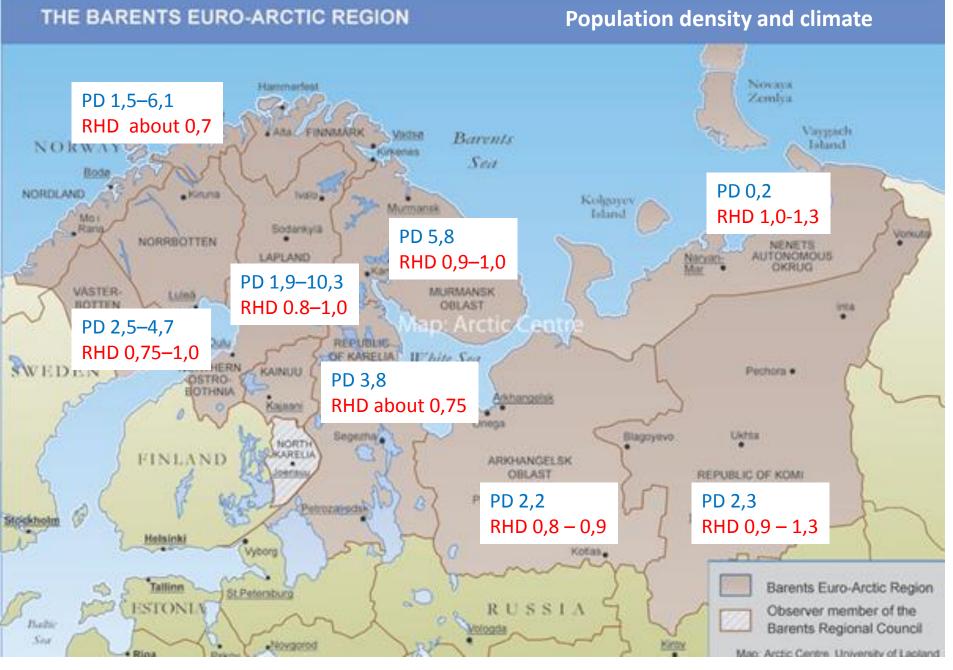
Björn Kjellström

Exergetics AB, Sweden

info@exergetics.se

Complete report can be downloaded from www.barentsinfo.fi

# **Objectives:**


- to provide guidelines and recommendations for the further use of the Swedish trust fund "The Barents Window",
- to provide recommendations on priorities for the JEWG (Joint Working Group on Energy within the Barents Council)

# **Method:**

- Define and compare indicators for energy efficiency
- Background data collected from official sources (mainly from 2008)
- Local energy efficiency centres in NW Russia were engaged in this

# Impacts:

• The report was presented at the JEWG meeting in Arkhangelsk May 2011. No obvious concrete actions taken so far.



PD population density persons/km<sup>2</sup> RHD Relative heating demand (Kiruna 1,0)

# Other important differences

### **Industrial structure**

Mining, mineral processing and forest industries important in Finland, Russia and Sweden.

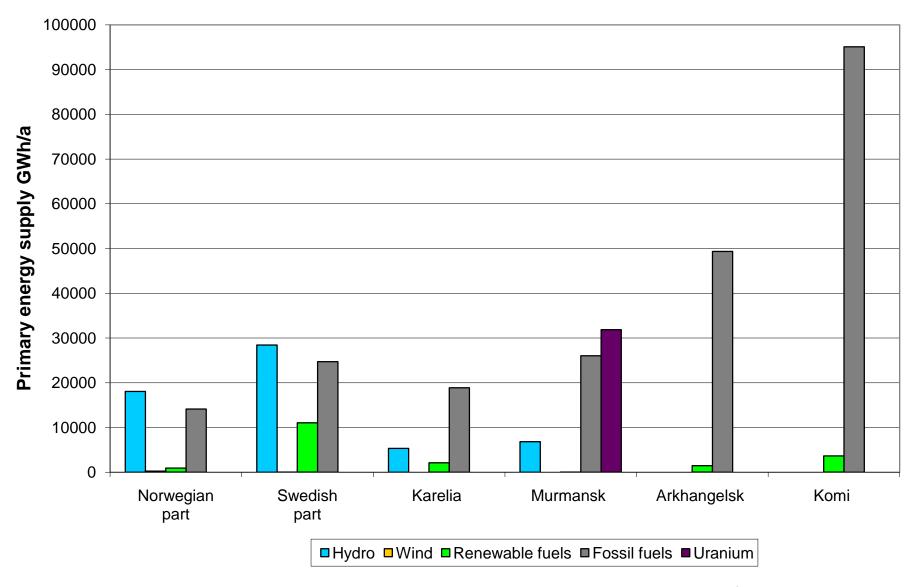
Oil and natural gas important in Norway, Republic of Komi and Nenets AO

# **Housing standard**

Average about 40 m<sup>2</sup>/capita in Finland and Sweden, 21 m<sup>2</sup>/capita in the Russian parts of the Barents region

### **Urbanization**

Larger fraction of the people lives in urban areas in Russian parts of the region


# Renewable energy potential

Hydropower important in Norway, Sweden and Russia, wind in Norway and parts of Finland, Russia and Sweden, biomass in Finland, Russia (except Murmansk) and Sweden

### **Energy prices**

Lower prices for fossil fuels and electricity in Russian parts of the region

# Structure of primary energy supply in 2008



Hydro and wind shown as electric energy generated. Uranium shown as thermal fission energy.

# Comparison of energy efficiency indicators (2008)

| Indicator                                                                           | Swedish parts                  | Russian<br>parts                        | Comment                                                                                         |
|-------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|
| Electricity supply (thermal plants) kWh(fuel)/kWh(el) generated Distribution losses | 1,08 – 1,26<br>2,6 – 3,0 %     | 2,30 – 3,33<br>5,3 – 10,9 %             | Fossil fuels dominate in Russia,<br>biomass fuels in Sweden.                                    |
| District heat supply kWh(fuel)/kWh(heat) generated Distribution losses              | 0,99 – 1,03<br>3,6 -14,9 %     | 1,13 – 1,37<br>5,3 - ?? % <sup>a)</sup> | Fossil fuels dominate in Russia,<br>biomass fuels in Sweden                                     |
| Paper and pulp production kWh(fuel)/ton product kWh(el)/ton product                 | 3800-6600<br>800-1100          | 3500-9800<br>930-2300                   | Meaningful comparisons require consideration of feedstocks used, process design and product mix |
| Mining kWh(fuel)/ton product kWh(el)/ton product                                    | 10 - ?? <sup>b)</sup><br>11-23 | 6 – 170<br>19 - 120                     | Meaningful comparisons require consideration of local conditions                                |
| Residential heating kWh(heat)/m <sup>2</sup> MWh(heat)/capita                       | About 170<br>10,5-11,3         | 420 – 590<br>8,0-13,5                   | Fossil fuels dominate in Russia, biomass fuels and electricity (often heat pumps) in Sweden     |

a) Data could only be found for Archangelsk oblast

b) Data could only be found for Boliden, Aitik

# Renewable energy – experiences and potential

### **Hydropower**

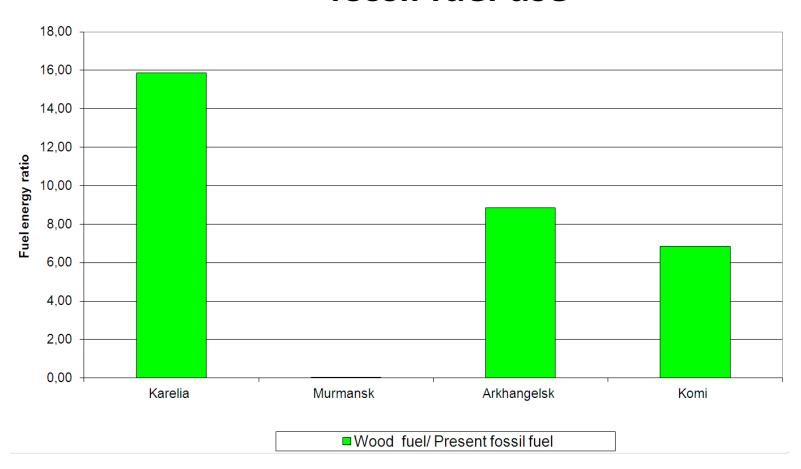
Commercial technology. Large unused potential in Norway and Sweden.

Environmental restrictions limits further expansion.

Potential in Russia was not quantified in the study.

# Solar (for electricity and heat)

Commercial technology. Feasible for niche-applications only.


### Windpower

A few installations in the region. Good documentation of experiences has not been found. Promising experiences from wind-diesel hybrid plants in Alaska. Sites with good wind conditions can certainly be found.

# Biomass (for electricity and heat)

Commercial technology for heat 10 kW - 200 MW and for co-generation of electricity 2 - 100 MW. Promising for plants with capacity 30 kW - 2 MW. Considerable unused potential in Finland, Sweden and Russia.

# Wood energy potential compared to present fossil fuel use



Data for Archangelsk from AOEEC.

Data for Karelia, Murmansk, and Komi estimated from forested area.

# **Conclusions**

- Energy efficiency in <u>thermal electricity generation</u> is less in Russia than in Sweden. The reason is that cogeneration is not used to the same extent;
- Energy efficiency in <u>district heat generation</u> is less in Russia than in Sweden. The reason is that the use of biomass fuel allows lower exhaust temperatures (even with recovery of condensation heat);
- Residential buildings are generally less energy efficient in Russia than in Finland and Sweden;
- Meaningful comparisons of losses in <u>distribution of electricity and heat</u> and efficiencies in <u>process industries</u> require more in-depth analysis.
- The Russian parts of the region are much more dependant on <u>fossil fuels</u> than the western parts and the contributions from <u>renewable energy</u> are small;
- The unused technical potential for substitution of fossil fuels with <u>biomass</u> <u>fuels</u> appears as very large in northwest Russia;
- The main reason for less efficiency and less use of renewable energy in Russia is <u>not</u> lack of knowledge but a consequence of lower prices for fossil fuels.
- Transfer of experiences from the Nordic countries can however facilitate a transition of the Russian energy system towards improved sustainability.

# Recommendations

### General:

- Focus on applications for improved energy efficiency and substitution of fossil fuels with renewables that are already profitable (such as renewable energy for remote settlements)
- Initiate co-operative R&D on issues of common interest.

### Recommendations to the JEWG of the Barents Council:

- Identify focal points for the cross-Barents co-operation on energy efficiency and transition to renewable energy;
- Arrange workshops for exchange of information and identification of specific issues for further co-operation (Efficiency of buildings, thermal electricity generation, district heating, biomass energy, arctic wind energy)

### Recommendations to the Barents Window Trust Fund:

 Use 50% of the fund (1,2 MEUR) for preparation of selected workshops and the rest for part financing of pilot projects.

# **Final words**

- The study was made in 2010 and mainly based on data from 2008. Still it is believed that the main conclusions are valid;
- Development of Russian energy policy is promising with large emphasis on energy efficiency (40% improvement to 2020) and promotion of renewable energy in particular for remote settlements;
- Russia will benefit from using experiences from the Nordic countries but initiatives for co-operation must come from Russia.